

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Trio IX 3G2,5 Antitwin

The Norwegian EPD Foundation

Owner of the declaration: **TECCON Norge AS**

Trio IX 3G2,5 Antitwin

Declared unit:

This declaration is based on Product Category **Rules:**

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 027:2020 Part B for Electrical cables and wires

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-9714-9666

Registration number: NEPD-9714-9666

Issue date: 10.04.2025

Valid to: 10.04.2030

EPD software:

LCAno EPD generator ID: 864157

General information

Product

Trio IX 3G2,5 Antitwin

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-9714-9666

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 027:2020 Part B for Electrical cables and wires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m Trio IX 3G2,5 Antitwin

Declared unit with option:

A1, A2, A3, A4, A5, C1, C2, C3, C4, D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT32.

Third party verifier:

Vito D'Incognito, Take Care International

(no signature required)

Owner of the declaration:

TECCON Norge AS Contact person: Jan Vestergaard Phone: 51 73 37 00 e-mail: jan.vestergaard@teccon.no

Manufacturer:

TECCON Norge AS

Place of production:

TECCON Norge AS Mekjarvik 18 4072 Randaberg, Norway

Management system:

Eco-lighthouse: 4247

Organisation no:

986 452 125

Issue date:

10.04.2025

Valid to:

10.04.2030

Year of study:

2024

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Approval number: NEPDT155

Developer of EPD: Jan Vestergaard, Teccon Norge AS

Reviewer of company-specific input data and EPD: Jorulv Søbstad

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

IX Trio - flere enkeltledere oplagt parrelelt og opspolet på samme snelle - bruges som installationsledning. Trækkes i rør, kanal, lukket føringsvej og lignende godkendt matriel jvf. EN 50565-1 og EN 50565-2-18a/b

Opspollingsform medføre at der ikke er behov for afspolingsværkstøjer - lederne spiraliserer ikke ved udtræk af emballagen! Ledningen er særdeles fleksibel og nem at afisolerer. Isolation er udført i selvslukkende, halogenfri og flammehæmmende materiale!

Product specification

Leder: Flertrådet kobberleder jvf. IEC60228

Isolation: Halogenfri thermoplast jvf. EN60363-0; EN60363-5

Leder farvet: farvekode jvf Cenelec

Forpakning: Card board box with Card board drum - flanges and cylinder.

Materials	kg	%
Metal - Copper	0,063	66,66
Plastic - Polyethylene	0,031	33,33
Total	0,095	100,00
Packaging	kg	%
Packaging - Cardboard	0,02	100,00
Total incl. packaging	0,11	100,00

Technical data:

Brandhæmmede jvf. EN60332-1 CPR: EN 50575 calss Dca ROHs: 2011/369/EU LVD: 2014/35/EU

Art.nr. 1010388

Market:

Norge

Reference service life, product

25

Reference service life, building or construction works

25

LCA: Calculation rules

Declared unit:

1 m Trio IX 3G2,5 Antitwin

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Metal - Copper	ecoinvent 3.6	Database	2019
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Plastic - Polyethylene	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage Constructi installation s				Use stage						End of life stage				Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurb ishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Χ	X	X	Χ	Χ	MND	MND	MND	MND	MND	MND	MND	Χ	Χ	Χ	X	X

System boundary:

Det valgte tværsnit kan betragtes som et udtryk for produktsortimentet Trio IX.

3; 4; 5 G 1,5mm2. 3; 4; 5 G 2,5mm2. 3 G 4 og 3 G 6.

3 G 2,5 repræsenterer >60% volumen omsætning af hele gruppen

Processens hoved trin er 1. kabel produktion og 2.forpakning af kabler.

Kabel proces: teksturering af isolation på en kobbertråd

Forpakning: Kabel ledere oprulles på tromle, der placeres i en boks - klar til anvendelse.

The flowchart below illustrates the system boundaries of the analysis:

Cradle Gate Grave

Additional technical information:

Article 1010388 Trio IX 3G2,5 represent the maximum energy consumption from the product family - from a production volume perspective as follow:

1010385 Trio IX 3G1,5

1010386 4-er IX 4G1,5

1010387 5-er IX 5G1,5

1010388 Trio IX 3G2,5

1010389 4-er IX 4G2,5

1010390 5-er IX 5G2,5

1010390 3-ei IX 3G2

1010392 Trio IX 3G6

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 = In A4, a transport distance from the production site to Elektroskandia's warehouse in Langhus was included. A distance of 300 km was also added as additional transport to market.

Modules A5 = 2 % product losses during installation are estimated by the company. No energy use has been quantified since installation in buildings is often done by manual labour. Use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off criterion of 1%.

Module C1 = de-construction in buildings is often done by manual labour. Use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off criterion of 1%.

Module C2 = 85 km is added as default transport to waste treatment in C2.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals and plastics allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastics is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (kgkm) - RER	36,7 %	788	0,043	l/tkm	33,88
Assembly (A5)	Unit	Value			
Waste, cardboard and paper, to average treatment - A3, inkl. transp. (kg)	kg/DU	0,015			
Product loss during installation (percentage of cable)	Units/DU	0,020			
Waste, cardboard and paper, to average treatment - A5 including transport (kg)	kg	0,015			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (kgkm) - RER	36,7 %	85	0,044	l/tkm	3,74
Waste processing (C3)	Unit	Value			
Aluminium to recycling (kg)	kg/DU	0,057			
Waste treatment of polyethylene (PE), incineration with energy recovery and fly ash extraction (kg)	kg/DU	0,047			
Copper to recycling (kg)	kg	0,038			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,0028			
Landfilling of aluminium (kg)	kg/DU	0,0063			
Landfilling of plastic mixture (kg)	kg	0,015			
Landfilling of copper (kg)	kg	0,025			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	0,21			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	2,30			
Substitution of primary copper with net scrap (kg)	kg/DU	0,068			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	Environmental impact												
	Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
	GWP-total	kg CO ₂ - eq	6,01E-01	2,03E-03	1,53E-02	1,38E-02	4,27E-02	0	1,52E-03	1,44E-01	2,43E-03	-1,78E-01	
	GWP-fossil	kg CO ₂ - eq	6,13E-01	2,03E-03	1,53E-02	1,38E-02	1,65E-02	0	1,52E-03	1,44E-01	2,43E-03	-1,77E-01	
	GWP-biogenic	kg CO ₂ - eq	-1,29E-02	8,35E-07	6,99E-06	5,73E-06	2,62E-02	0	6,21E-07	1,16E-06	2,44E-07	-7,96E-04	
	GWP-luluc	kg CO ₂ - eq	5,34E-04	7,36E-07	1,44E-06	4,92E-06	1,13E-05	0	5,32E-07	1,71E-07	2,37E-07	-6,33E-04	
٨	ODP	kg CFC11 - eq	3,34E-08	4,59E-10	3,54E-10	3,13E-09	8,86E-10	0	3,47E-10	1,10E-10	1,93E-10	-9,72E-04	
	AP	mol H+ -eq	5,42E-02	6,98E-06	1,03E-05	3,98E-05	1,13E-03	0	6,23E-06	1,80E-05	5,31E-06	-2,75E-02	
-	EP-FreshWater	kg P -eq	5,31E-04	1,61E-08	2,94E-08	1,11E-07	1,10E-05	0	1,20E-08	1,10E-08	1,20E-08	-1,86E-04	
	EP-Marine	kg N -eq	1,84E-03	1,44E-06	3,28E-06	7,87E-06	3,97E-05	0	1,85E-06	8,65E-06	3,77E-06	-1,16E-03	
4	EP-Terrestial	mol N - eq	2,62E-02	1,61E-05	3,55E-05	8,80E-05	5,57E-04	0	2,04E-05	9,36E-05	2,11E-05	-1,78E-02	
	POCP	kg NMVOC -eq	8,40E-03	5,74E-06	9,81E-06	3,37E-05	1,78E-04	0	6,25E-06	2,24E-05	6,35E-06	-4,84E-03	
2.F.D	ADP- minerals&metals ¹	kg Sb- eq	1,53E-04	5,53E-08	5,47E-08	3,82E-07	3,19E-06	0	4,13E-08	5,04E-09	5,52E-09	-1,53E-04	
	ADP-fossil ¹	MJ	8,69E+00	3,06E-02	2,54E-02	2,09E-01	1,92E-01	0	2,30E-02	9,41E-03	1,56E-02	-1,65E+00	
<u>%</u>	WDP ¹	m^3	6,35E+00	2,92E-02	5,62E-01	2,02E-01	1,64E-01	0	2,19E-02	2,13E-02	3,19E-01	5,55E+00	

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Addi	tional e	environmental i	mpact indi	cators								
Ind	icator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	PM	Disease incidence	9,90E-08	1,22E-10	1,20E-10	8,47E-10	2,11E-09	0	1,10E-10	7,10E-11	9,30E-11	-6,14E-08
	IRP ²	kgBq U235 -eq	1,70E-02	1,34E-04	1,49E-04	9,14E-04	4,08E-04	0	1,00E-04	1,59E-05	9,48E-05	-3,13E-03
	ETP-fw ¹	CTUe	4,09E+02	2,26E-02	5,80E-02	1,55E-01	8,88E+00	0	1,69E-02	2,81E-02	1,97E+01	-2,53E+02
46.*	HTP-c ¹	CTUh	9,82E-09	0,00E+00	2,00E-12	0,00E+00	2,03E-10	0	0,00E+00	3,00E-12	1,00E-12	-3,57E-09
86 E	HTP-nc ¹	CTUh	8,72E-07	2,40E-11	7,00E-11	1,69E-10	1,81E-08	0	1,80E-11	1,20E-10	2,40E-11	-3,05E-07
	SQP ¹	dimensionless	7,72E+00	2,11E-02	1,63E-02	1,46E-01	1,67E-01	0	1,58E-02	1,14E-03	3,59E-02	-4,47E+00

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource	e use											
Ind	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
i, i	PERE	MJ	9,43E-01	4,34E-04	3,96E-02	2,99E-03	2,05E-02	0	3,24E-04	2,77E-04	1,72E-03	-1,84E+00
2	PERM	MJ	4,24E-01	0,00E+00	0,00E+00	0,00E+00	-4,15E-01	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
~F₃	PERT	MJ	1,37E+00	4,34E-04	3,96E-02	2,99E-03	-3,95E-01	0	3,24E-04	2,77E-04	1,72E-03	-1,84E+00
	PENRE	MJ	7,43E+00	3,06E-02	2,54E-02	2,09E-01	1,67E-01	0	2,30E-02	9,41E-03	1,56E-02	-1,65E+00
Åe	PENRM	MJ	1,38E+00	0,00E+00	0,00E+00	0,00E+00	1,35E-03	0	0,00E+00	-1,35E+00	0,00E+00	0,00E+00
IA	PENRT	MJ	8,81E+00	3,06E-02	2,54E-02	2,09E-01	1,68E-01	0	2,30E-02	-1,34E+00	1,56E-02	-1,65E+00
	SM	kg	1,50E-02	0,00E+00	0,00E+00	0,00E+00	3,18E-04	0	0,00E+00	0,00E+00	3,18E-05	4,77E-02
2	RSF	MJ	1,01E-02	1,55E-05	4,35E-05	1,07E-04	2,16E-04	0	1,16E-05	7,80E-06	3,61E-05	4,27E-03
Ø.	NRSF	MJ	1,14E-02	5,63E-05	1,24E-04	3,83E-04	2,69E-04	0	4,14E-05	0,00E+00	2,88E-04	-6,02E-02
&	FW	m ³	1,05E-02	3,25E-06	3,11E-04	2,24E-05	2,30E-04	0	2,42E-06	2,66E-05	1,96E-05	-5,95E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of li	End of life - Waste												
Indicator		Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
	HWD	kg	6,29E-03	1,57E-06	1,57E-04	1,08E-05	2,31E-04	0	1,17E-06	0,00E+00	3,56E-03	-1,86E-03	
Ū	NHWD	kg	1,63E-01	1,47E-03	6,43E-02	1,02E-02	2,06E-02	0	1,10E-03	0,00E+00	4,95E-02	-8,34E-02	
8	RWD	kg	1,64E-05	2,09E-07	7,96E-08	1,43E-06	4,00E-07	0	1,57E-07	0,00E+00	1,06E-07	-2,68E-06	

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life	ind of life - Output flow												
Indica	tor	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
@ D	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
€\	MFR	kg	0,00E+00	0,00E+00	8,96E-02	0,00E+00	2,97E-02	0	0,00E+00	9,54E-02	1,49E-06	-1,87E-03	
DF	MER	kg	0,00E+00	0,00E+00	5,78E-03	0,00E+00	2,04E-03	0	0,00E+00	4,77E-02	8,38E-07	-2,46E-04	
7 D	EEE	MJ	0,00E+00	0,00E+00	8,88E-03	0,00E+00	4,44E-03	0	0,00E+00	9,25E-02	9,39E-06	-6,02E-04	
DØ.	EET	MJ	0,00E+00	0,00E+00	1,34E-01	0,00E+00	6,72E-02	0	0,00E+00	1,40E+00	1,42E-04	-9,10E-03	

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content											
ne factory gate											
0,00E+00											
7,11E-03											

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eg/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

No effect on in-door environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products												
Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
GWPIOBC	kg CO ₂ -eq	6,23E-01	2,03E-03	1,53E-02	1,38E-02	1,61E-02	0	1,52E-03	1,44E-01	2,53E-03	-9,13E-02	

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization.

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Philis et al., (2022). EPD generator for NPCR 027 part B for electrical wires and cables, background information for EPD generator application and LCA data, LCA.no Report number: 03.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021.

EPD Norway (2022). NPCR 027 Part B for electrical cables and wires. The Norwagian EPD foundation. Version 2.0 published 01.03.2022.

© epd-norge	Program operator and publisher	Phone:	+47 977 22 020
	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
TECCON	Owner of the declaration:	Phone:	51 73 37 00
	TECCON Norge AS	e-mail:	jan.vestergaard@teccon.no
	Mekjarvik 18, 4072 Randaberg, Norway	web:	teccon.no
LCA!	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
LCA)	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal